Menú secundario

Artículos SCI

 



2012



Nanotecnología en Superficies y Plasma

Roughness assessment and wetting behavior of fluorocarbon surfaces

Terriza, A; Alvarez, R; Borras, A; Cotrino, J; Yubero, F; Gonzalez-Elipe, AR
Journal of Colloid and Interface Science, 376 (2012) 274-282
DOI: 10.1016/j.jcis.2012.03.010



Abstract

The wetting behavior of fluorocarbon materials has been studied with the aim of assessing the influence of the surface chemical composition and surface roughness on the water advancing and receding contact angles. Diamond like carbon and two fluorocarbon materials with different fluorine content have been prepared by plasma enhanced chemical vapor deposition and characterized by X-ray photoemission, Raman and FT-IR spectroscopies. Very rough surfaces have been obtained by deposition of thin films of these materials on polymer substrates previously subjected to plasma etching to increase their roughness. A direct correlation has been found between roughness and water contact angles while a superhydrophobic behavior (i.e., water contact angles higher than 150° and relatively low adhesion energy) was found for the films with the highest fluorine content deposited on very rough substrates. A critical evaluation of the methods currently used to assess the roughness of these surfaces by atomic force microscopy (AFM) has evidenced that calculated RMS roughness values and actual surface areas are quite dependent on both the scale of observation and image resolution. A critical discussion is carried out about the application of the Wenzel model to account for the wetting behavior of this type of surfaces.

Junio, 2012 · DOI: 10.1016/j.jcis.2012.03.010




Nanotecnología en Superficies y Plasma - Materiales Nanoestructurados y Microestructura - Tribología y Protección de Superficies

Microstructural and chemical characterization of nanostructured Tialsin coatings with nanoscale resolution

Godinho, V; Rojas, TC; Trasobares, S; Ferrer, FJ; Delplancke-Ogletree, MP; Fernandez, A
Microscopy and Microanalysis, 18 (2012) 568-581
DOI: 10.1017/S1431927612000384



Abstract

Nanoscale resolution electron microscopy analysis combined with ion beam assisted techniques are presented here, to give answers to full characterization of morphology, growth mode, phase formation, and compositional distribution in nanocomposite TiAlSiN coatings deposited under different energetic conditions. Samples were prepared by magnetron sputtering, and the effects of substrate temperature and bias were investigated. The nanocomposite microstructure was demonstrated by the formation of a face-centered cubic (Ti,Al)N phase, obtained by substitution of Al in the cubic titanium nitride (c-TiN) phase, and an amorphous matrix at the column boundary regions mainly composed of Si, N (and O for the samples with higher oxygen contents). Oxygen impurities, predicted as the principal responsible for the degradation of properties, were identified, particularly in nonbiased samples and confirmed to occupy preferentially nitrogen positions at the column boundaries, being mainly associated to silicon forming oxynitride phases. It has been found that the columnar growth mode is not the most adequate to improve mechanical properties. Only the combination of moderate bias and additional substrate heating was able to reduce the oxygen content and eliminate the columnar microstructure leading to the nanocomposite structure with higher hardness (>30 GPa).

Junio, 2012 · DOI: 10.1017/S1431927612000384




Nanotecnología en Superficies y Plasma

Investigation of the Growth Mechanisms of a-CHx Coatings Deposited by Pulsed Reactive Magnetron Sputtering

López-Santos, C; Colaux, JL; González, JC; Lucas, S
Journal of Physical Chemistry C, 116 (2012) 12017-12026
DOI: 10.1021/jp300697s



Abstract

The study of the growth mechanisms of amorphous hydrogenated carbon coatings (a-CHx) deposited by reactive pulsed magnetron discharge in Ar + C2H2, Ar + H-2, and Ar + C2H2 + H-2 low-pressure atmospheres is presented in this work. Hydrogen-containing species of the reactant gas affect the microstructure and surface properties of the a-CHx thin films. The dynamic scaling theory has been used to relate the main reactive species involved in the deposition process to the growth mechanisms of the thin film by means of the analysis of the roughness evolution. Anomalous scaling effects have been observed in smooth a-CHx coatings. Dynamic scaling exponents alpha, beta, and z indicate a general growth controlled by surface diffusion mechanisms. Hydrogen species have an influence on the lateral growth of the a-CHx coatings and are involved in the development of a polymeric-like structure. Meanwhile, hydrocarbon species promote the generation of higher aggregates, which increases the roughness of a more sp(2) clustering structure of the a-CHx coating.

Junio, 2012 · DOI: 10.1021/jp300697s




Materiales para Bioingeniería y Regeneración Tisular

Tuning liver stiffness against tumours: An in vitro study using entrapped cells in tumour-like microcapsules

Leal-Egana, A; Fritsch, A; Heidebrecht, F; Diaz-Cuenca, A; Nowicki, M; Bader, A; Kas, J
Journal of the mechanical behavior of biomedical materials, 9 (2012) 113-121
DOI: 10.1016/j.jmbbm.2012.01.013



Abstract

Liver fibrosis is a reversible pathology characterized by the up-regulated secretion and deposition of ECM proteins and inhibitors of metalloproteinases, which increase the stiffness and viscosity of this organ. Since recent studies have shown that fibrosis preceded the generation of hepatocellular carcinomas, we hypothesize that liver fibrosis could play a role as a mechanism for restricting uncontrolled cell proliferation, inducing the mortality of cancer cells and subsequent development of primary tumours.

With this purpose, in this work we analysed in vitro how the modulation of stiffness can influence proliferation, viability and aggregation of hepatocarcinoma cells (HepG(2)) embedded in 3D micromilieus mimicking values of elasticity of fibrotic liver tissues.

Experiments were performed by immobilizing up to 10 HepG(2) cells within microcapsules made of 0.8%, 1.0% and 1.4% w/v alginate which, besides having values of elasticity from the lower-healthy to the upper-fibrotic range liver tissues, lacked domains for proteases, mimicking the micromilieu existing in hepatic primary tumours.

Our results show that entrapped cells exhibited a short duplication phase followed by an irreversible decay stage, in which cell mortality could be mediated by two mechanisms: mechanical stress, in the case of cells entrapped in a stiffer micromilieu; and mass transfer limitations produced by pore coarsening at the interface cell-matrix, in softer micromilieus.

According to the authors' knowledge, this work represents the first attempt to elucidate the role of liver fibrosis during Hepatocarcinoma pathologies, suggesting that the generation of a non-biodegradable and mechanically unfavourable environment surrounding cancer cells could control the proliferation, migration of metastatic cells and the subsequent development of primary tumours.

Mayo, 2012 · DOI: 10.1016/j.jmbbm.2012.01.013




Materiales Ópticos Multifuncionales

Effect of diffuse light scattering designs on the efficiency of dye solar cells: An integral optical and electrical description

Galvez, FE; Kemppainen, E; Miguez, H; Halme, J
Journal of Physical Chemistry C, 116 (2012) 11426-11433
DOI: 10.1021/jp2092708



Abstract

Herein, we present an integral optical and electrical theoretical analysis of the effect of different diffuse light scattering designs on the performance of dye solar cells. Light harvesting efficiencies and electron generation functions extracted from optical numerical calculations based on a Monte Carlo approach are introduced in a standard electron diffusion model to obtain the steady-state characteristics of the different configurations considered. We demonstrate that there is a strong dependence of the incident photon to current conversion efficiency, and thus of the overall conversion efficiency, on the interplay between the value of the electron diffusion length considered and the type of light scattering design employed, which determines the spatial dependence of the electron generation function. Other effects, like the influence of increased photoelectron generation on the photovoltage, are also discussed. Optimized scattering designs for different combinations of electrode thickness and electron diffusion length are proposed.

Mayo, 2012 · DOI: 10.1021/jp2092708




Fotocatálisis Heterogénea: Aplicaciones

Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for Rhodamine B degradation under sunlike and visible illumination

Murcia-Lopez, S; Hidalgo, MC; Navio, JA
Applied Catalysis A-General, 423-424 (2012) 34-41
DOI: 10.1016/j.apcata.2012.02.016



Abstract

The photocatalytic activity, under sunlike illumination, for Rhodamine B (RhB) degradation using Bi2WO6-TiO2 samples, is reported. Two different kinds of Bi2WO6-TiO2 samples were studied, obtained by distinct methods: first, a mechanical mixing, by adding to synthesized nanosheet-like Bi2WO6 powder the corresponding amount of TiO2 nanoparticles (P25) in order to obtain physical mixtures of both catalysts with different percentages of TiO2 (5, 10 and 50 wt%); second, a single Bi2WO6-TiO2 heterostructure was prepared by adding commercial TiO2-P25 to the Bi2WO6 precursors (50 wt%) prior to the hydrothermal treatment, thus obtaining a sample with "in situ" TiO2 incorporation. Comparisons between the photocatalytic behaviour of these samples and those exhibited by the single materials Bi2WO6 and TiO2 (P25) were carried out, in order to establish the effect not only of the TiO2 addition but also of the way in which TiO2 (P25) is incorporated. The role of each single photocatalyst in the mixtures in the RhB degradation and mineralization under sunlike and just visible illumination was also studied.

Mayo, 2012 · DOI: 10.1016/j.apcata.2012.02.016




Materiales de Diseño para la Energía y Medioambiente

Remediation of metal-contaminated soils with the addition of materials - Part II: Leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils

Gonzalez-Nunez, R; Alba, MD; Orta, MM; Vidal, M; Rigol, A
Chemosphere, 87 (2012) 829-837
DOI: 10.1016/j.chemosphere.2012.01.015



Abstract

The effect of the addition of materials on the leaching pattern of As and metals (Cu, Zn, Ni, Pb, and Cd) in two contaminated soils was investigated. The examined materials included bentonites, silicates and industrial wastes, such as sugar foam, fly ashes and a material originated from the zeolitization of fly ash. Soil + material mixtures were prepared at 10% doses. Changes in the acid neutralization capacity, crystalline phases and contaminant leaching over a wide range of pHs were examined by using pHstat leaching tests. Sugar foam, the zeolitic material and MX-80 bentonite produced the greatest decrease in the leaching of pollutants due to an increase in the pH and/or the sorption capacity in the resulting mixture. This finding suggests that soil remediation may be a feasible option for the reuse of non-hazardous wastes.

Mayo, 2012 · DOI: 10.1016/j.chemosphere.2012.01.015




Materiales de Diseño para la Energía y Medioambiente

Interfacial characterization of silicon nitride/silicon nitride joints brazed using Cu-base active metal interlayers

Singh, M; Fernandez, JM; Asthana, R; Rico, JR
Ceramics Intenational, 38 (2012) 2793-2802
DOI: 10.1016/j.ceramint.2011.11.050



Abstract

Silicon nitride/silicon nitride joints were vacuum brazed at 1317 K for 5 min and 30 min using ductile Cu-base active metal interlayers. The joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). An inhomogeneous Ti-rich reaction layer (similar to 2-3 mu m thick) formed in 5 min at the Si3N4/braze interface. The inhomogeneity disappeared after brazing for 30 min and was replaced with a compact and featureless reaction zone. TEM studies revealed fine grains in the reaction layer, and larger grains in the inner part of the joint interfaces. The joints were crack-free and presented features associated with plastic deformation, which indicated accommodation of strain associated with CTE mismatch. Electron Backscatter diffraction (EBSD) revealed a highly textured braze alloy interlayer and its crystallographic orientation was determined. The formation of additional phases at the joint interface during brazing is discussed.

Mayo, 2012 · DOI: 10.1016/j.ceramint.2011.11.050




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity

Obregon, S; Caballero, A; Colon, G
Applied Catalysis B-Environmental, 117 (2012) 59-66
DOI: 10.1016/j.apcatb.2011.12.037



Abstract

BiVO 4 hierarchical heterostructures are synthesized by means of a surfactant free hydrothermal method having good photoactivities for the degradation of methylene blue under UV-vis irradiation. From the structural and morphological characterization it has been stated that BiVO 4 present the monoclinic crystalline phase with different morphologies depending on the pH value, type of precipitating agent and hydrothermal temperature and treatment time. The best photocatalytic performance was attained for the samples with needle-like morphology.

Mayo, 2012 · DOI: 10.1016/j.apcatb.2011.12.037




Reactividad de Sólidos

Spark plasma sintering of Ti yNb 1-yC xN 1-x monolithic ceramics obtained by mechanically induced self-sustaining reaction

Borrell, A; Salvador, MD; Garcia-Rocha, V; Fernandez, A; Chicardi, E; Gotor, FJ
Materials Science and Engineering A, 543 (2012) 173-179
DOI: 10.1016/j.msea.2012.02.071



Abstract

Nanometer-sized titanium-niobium carbonitride powders (Ti yNb 1-yC xN 1-x) with different Ti/Nb atomic ratios were obtained by a mechanically induced self-sustaining reaction, and sintered by spark plasma sintering technique at 1500°C for 1min in a vacuum atmosphere. Mechanical properties such as hardness and Young's modulus were determined by nanoindentation technique and friction and wear coefficients assessed by ball-on-disk testing using alumina ball in dry sliding conditions. The fracture surface and wear tracks of samples were examined by scanning electron microscopy. Results showed that it is possible to obtain dense monolithic ceramics from the solid solution (Ti yNb 1-yC xN 1-x) with good mechanical properties and excellent wear resistance. The optimum values of nanomechanical properties were found for the Ti 0.3Nb 0.7C 0.5N 0.5 ceramic composition, which exhibited a high hardness over 26.0GPa and Young's modulus around 400GPa.

Mayo, 2012 · DOI: 10.1016/j.msea.2012.02.071




Materiales de Diseño para la Energía y Medioambiente

Synthetic high-charge organomica: Effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants

Pazos, MC; Castro, MA; Orta, MM; Pavon, E; Rios, JSV; Alba, MD
Langmuir, 28 (2012) 7325-7332
DOI: 10.1021/la300153e



Abstract

A family of organomicas was synthesized using synthetic swelling micas with high layer charge (NanSi8-nAlnMg6F4O20 center dot XH2O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by C-13, Al-27, and Si-29 MAS NMR The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

Mayo, 2012 · DOI: 10.1021/la300153e




Nanotecnología en Superficies y Plasma

Attenuation lengths of high energy photoelectrons in compact and mesoporous SiO2 films

Ferrer, FJ; Gil-Rostra, J; Gonzalez-Garcia, L; Rubio-Zuazo, J; Romero-Gomez, P; Lopez-Santos, MC; Yubero, F
Surface Science, 606 (2012) 820-824
DOI: 10.1016/j.susc.2012.01.017



Abstract

We have experimentally evaluated attenuation lengths (AL) of photoelectrons traveling in compact and micro and mesoporous (∼ 45% voids) SiO 2 thin films with high (8.2-13.2 keV) kinetic energies. The films were grown on polished Si(100) wafers. ALs were deduced from the intensity ratio of the Si 1s signal from the SiO 2 film and Si substrate using the two-peaks overlayer method. We obtain ALs of 15-22 nm and 23-32 nm for the compact and porous SiO 2 films for the range of kinetic energies considered. The observed AL values follow a power law dependence on the kinetic energy of the electrons where the exponent takes the values 0.81 ± 0.13 and 0.72 ± 0.12 for compact and porous materials, respectively.

Mayo, 2012 · DOI: 10.1016/j.susc.2012.01.017




Nanotecnología en Superficies y Plasma

Correlation lengths, porosity and water adsorption in TiO2 thin films prepared by glancing angle deposition

Gonzalez-Garcia, L; Parra-Barranco, J; Sanchez-Valencia, JR; Barranco, A; Borras, A; Gonzalez-Elipe, AR; Garcia-Gutierrez, MC; Hernandez, JJ; Rueda, DR; Ezquerra, TA
Nanotechnology, 23 (2012) 205701
DOI: 10.1088/0957-4484/23/20/205701



Abstract

This paper reports a thorough microstructural characterization of glancing angle deposited (GLAD) TiO 2 thin films. Atomic force microscopy (afm), grazing-incidence small-angle x-ray scattering (GISAXS) and water adsorption isotherms have been used to determine the evolution of porosity and the existence of some correlation distances between the nanocolumns constituting the basic elements of the films nanostructure. It is found that the deposition angle and, to a lesser extent, the film thickness are the most important parameters controlling properties of the thin film. The importance of porosity and some critical dimensions encountered in the investigated GLAD thin films is highlighted in relation to the analysis of their optical properties when utilized as antireflective coatings or as hosts and templates for the development of new composite materials.

Mayo, 2012 · DOI: 10.1088/0957-4484/23/20/205701




Reactividad de Sólidos

Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change

Sanchez-Jimenez, PE; Perez-Maqueda, LA; Perejon, A; Criado, JM
Journal of Physical Chemistry C, 116 (2012) 11797-11807
DOI: 10.1021/jp302466p



Abstract

The enhanced thermal stability of polymer-clay nanocomposites over the original polymers is one of their most interesting features, and it has been profusely studied within the last decades. Here, a thorough kinetic analysis of polystyrene and a montmorillonite-polystyrene nanocomposite has been performed making use of state-of-the-art kinetic procedures. It has been found that the degradation mechanism changes from a chain scission process for the polymer to a complex two-step nucleation-driven reaction for the nanocomposite. This mechanism change can explain the delayed onset of degradation found in the nanocomposite. Moreover, observation by transmission electron microscopy (TEM) has shown that the clay platelets within the composite could act as nucleation centers for the decomposition.

Mayo, 2012 · DOI: 10.1021/jp302466p




Química de Superficies y Catálisis

Gold supported cryptomelane-type manganese dioxide OMS-2 nanomaterials deposited on AISI 304 stainless steels monoliths for CO oxidation

Martinez, LM; Romero-Sarria, F; Hernandez, WY; Centeno, MA; Odriozola, JA
Applied Catalysis A-General, 423 (2012) 137-145
DOI: 10.1016/j.apcata.2012.02.026



Abstract

Gold supported on cryptomelane-type OMS-2 catalysts deposited on AISI 304 stainless steels monoliths have been prepared for the first time, characterised and tested in the CO oxidation reaction. An easy and non-conventional method of incorporation of gold to the cryptomelane solid is used. This method allows the preparation of the monolithic catalysts without altering the structural and textural characteristics of the parent OMS-2 material. Although these catalysts do not show an optimal performance for the oxidation of CO, the presence of small gold particles enhances the catalytic performances of the cryptomelane producing promissory CO oxidation catalysts. The non-conventional gold deposition favours a partial loss of K + into the channels, resulting in an increment of the average oxidation state of manganese which favours the catalytic behaviour of these kinds of materials. This study can be taken as a starting point to obtain very active gold catalysts supported on OMS-2 materials through the optimisation of the gold-support interaction and the decrease in the gold particle size.

Mayo, 2012 · DOI: 10.1016/j.apcata.2012.02.026




Materiales Coloidales

Incorporation of Si into TiO2 phases at high pressure

Escudero, A; Langenhorst, F
American Mineralogist, 97 (2012) 524-531
DOI: 10.2138/​am.2012.3941



Abstract

Silicon incorporation in TiO 2 phases at increasing pressures until 20 GPa at 1300 °C has been studied by XRD and TEM. Rutile is the stable Si-doped TiO 2 phase until at least 7 GPa, transforming into α-PbO 2 structured TiO2 between 7 and 10 GPa. The further transformation to the TiO 2 polymorph with the baddeleyite structure, akaogiite, has not been observed on the quenched samples. XRD and TEM-EDX data suggest that the Si-doped TiO 2 akaogiite polymorph is non-quenchable and reverts to a-PbO2 structured TiO 2 when releasing the pressure. This transformation gives rise to α-PbO 2 structured TiO 2 grains decorated with p fringes stacking faults. Silicon solubility in TiO 2 phases increases with increasing the synthesis pressure until 16 GPa, implying the substitutional solid solution to be the mechanism of solubility. The influence of the dopants on the stability of the rutile and the α-PbO2 structured TiO 2 has also been analyzed.

Abril, 2012 · DOI: 10.2138/​am.2012.3941




Nanotecnología en Superficies y Plasma

Self-assembly at room temperature of thermally stable discrete and extended oligomers of polycyclic aromatics on Ag(100): induced dipoles and cooperative effects

Papageorgiou, AC; Alavi, A; Lambert, RM
Chemical Communications, 48 (2012) 3394-3396
DOI: 10.1039/c2cc17728e



Abstract

Thermally stable nanoarchitectures are realized on the Ag(100) surface by self-assembly of asymmetrically substituted arenes. The process is instigated by adsorption-induced molecule → surface charge transfer that gives rise to in-plane dipole moments. Observation and calculation indicate that cooperative interactions further enhance the stability of these polarizable systems.

Abril, 2012 · DOI: 10.1039/c2cc17728e




Química de Superficies y Catálisis

Influence of Vanadium or Cobalt Oxides on the CO Oxidation Behavior of Au/MOx/CeO2-Al2O3 Systems

Reina, TR; Moreno, AA; Ivanova, S; Odriozola, JA; Centeno, MA
Chemcatchem, 4 (2012) 512-520
DOI: 10.1002/cctc.201100373



Abstract

A series of V2O5- and Co3O4-modified ceria/alumina supports and their corresponding gold catalysts were synthesized and their catalytic activities evaluated in the CO oxidation reaction. V2O5-doped solids demonstrated a poor capacity to abate CO, even lower than that of the original ceria/alumina support, owing to the formation of CeVO4. XRD, Raman spectroscopy, and H2-temperature programmed reduction studies confirmed the presence of this stoichiometric compound, in which cerium was present as Ce3+ and its redox properties were avoided. Co3O4-doped supports showed a high activity in CO oxidation at subambient temperatures. The vanadium oxide-doped gold catalysts were not efficient because of gold particle agglomeration and CeVO4 formation. However, the gold–cobalt oxide–ceria/alumina catalysts demonstrated a high capacity to abate CO at and below room temperature. Total conversion was achieved at −70 °C. The calculated apparent activation energy values revealed a theoretical optimum loading of a half-monolayer.

Abril, 2012 · DOI: 10.1002/cctc.201100373




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Study of Oxygen Reactivity in La1-x Sr (x) CoO3-delta Perovskites for Total Oxidation of Toluene

Pereniguez, R; Hueso, JL; Gaillard, F; Holgado, JP; Caballero, A
Catalysis Letters, 142 (2012) 408-416
DOI: 10.1007/s10562-012-0799-z



Abstract

The total oxidation of toluene is studied over catalytic systems based on perovskite with general formula AA′CoO 3-δ (A = La, A′ = Sr). The systematic and progressive substitution of La 3+ by Sr 2+ cations in the series (La 1-xSr xCoO 3-δ system) of the perovskites have been studied to determine their influence in the final properties of these mixed oxides and their corresponding reactivity performance for the total oxidation of toluene as a model volatile organic compound with detrimental effects for health and environment. The structure and morphology of the samples before and after reaction have been characterized by XRD, BET and FE-SEM techniques. Additional experiments of temperature programmed desorption of O 2 in vacuum and reduction in H 2 were also performed to identify the main surface oxygen species and the reducibility of the different perovskites. It is remarkable that the La 1-xSr xCoO 3-δ series presents better catalytic performance for the oxidation of toluene, with lower values for the T 50 (temperature of 50 % toluene conversion) than the previously studied LaNi 1-yCoyO 3 series.

Abril, 2012 · DOI: 10.1007/s10562-012-0799-z




Nanotecnología en Superficies y Plasma

Plasma deposition of perylene-adamantane nanocomposite thin films for NO 2 room-temperature optical sensing

Aparicio, FJ; Blaszczyk-Lezak, I; Sanchez-Valencia, JR; Alcaire, M; Gonzalez, JC; Serra, C; Gonzalez-Elipe, AR; Barranco, A
Journal of Physical Chemistry C, 116 (2012) 8731-8740
DOI: 10.1021/jp209272s



Abstract

This work reports the preparation, by a new remote assisted plasma deposition process, of luminescent nanocomposite thin films consisting of an insoluble organic matrix where photonically active perylene molecules are embedded. The films are obtained by the remote plasma deposition of adamantane and perylene precursor molecules. The results show that the adamantane precursor is very effective to improve the perylene–adamantane nanocomposite transparency in comparison with plasma deposited perylene films. The plasma deposited adamantane films have been characterized by secondary-ion mass spectrometry and FT-IR spectroscopy. These techniques and atomic force microscopy (AFM) have been also used for the characterization of the nanocomposite films. Their optical properties (UV–vis absorption, fluorescence, and refractive index) have been also determined and their sensing properties toward NO2 studied. It is found that samples with the perylene molecules embedded within the transparent plasma deposited matrix are highly sensitive toward this gas and that the sensitivity of the films can be adjusted by modifying the aggregation state of the perylene molecules, as determined by the analysis of their fluorescence spectra. By monitoring the fluorescence emission of these films, it has been possible to detect a NO2 concentration as low as 0.5 ppm in air at room temperature. Because of their chemical stability and transparency in the UV region, the remote plasma deposited adamantane thin films have revealed as an optimum host matrix for the development of photonically active composites for sensing applications.

Abril, 2012 · DOI: 10.1021/jp209272s




Reactividad de Sólidos

Room temperature mechanosynthesis of the La 1-xSr xMnO 3±δ (0≤x≤1) system and microstructural study

Sayagues, MJ; Cordoba, JM; Gotor, FJ
Journal of Solid State Chemistry, 188 (2012) 11-16
DOI: 10.1016/j.jssc.2012.01.018



Abstract

Monophase nanocrystalline powders belonging to the La1−xSrxMnOδ system (0≤x≤1) with a perovskite structure have been obtained by mechanochemistry synthesis using a planetary ball milling equipment from La2O3, SrO, and Mn2O3 mixtures. The solid state reaction was complete after one hour of milling treatment. For all the compositional range, the diffraction domain was very small and the structure appeared as a pseudo cubic perovskite. After annealing at 1100 °C under static air, the symmetry evolution due to the La substitution by Sr was analyzed by X-ray and electron diffraction. Samples with x=0, 0.25, 0.5, and 0.75 were assigned to R-3c space group (1 6 7) in the rhombohedral system and perovskite structure. However, the symmetry of the last term of the system (x=1), SrMnOδ sample, changed to P63/mmc space group (1 9 4) in the hexagonal system. The terms with x=0.8, 0.85, and 0.9 presented mainly rhombohedral symmetry.

Abril, 2012 · DOI: 10.1016/j.jssc.2012.01.018




Materiales de Diseño para la Energía y Medioambiente

Residual stresses in Al2O3-ZrO 2 (3mol.% Y2O3) directionally solidified eutectic ceramics as a function of temperature

Ramirez-Rico, J; Martinez-Fernandez, J; Pena, JI; Singh, D; Routbort, J
Materials Science and Engineering A, 541 (2012) 61-66
DOI: 10.1016/j.msea.2012.02.001



Abstract

Directionally solidified eutectics are in situ composites grown from the melt. Due to the differences in the thermoelastic properties of the different phases present in the material, these composites often exhibit residual stresses that can affect their mechanical properties. In this work we use neutron diffraction to investigate residual stresses in Al 2O 3-ZrO 2 eutectic composites as a function of temperature, for samples processed at two different growth rates, 10mm/h and 750mm/h. Our results show that the stress-free temperature is in the range of 1200±200°C. We explain the experimental observations based on the thermoelastic properties of the phases in the material and confirm our measurements using a simple, self-consistent model.

Abril, 2012 · DOI: 10.1016/j.msea.2012.02.001




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Advanced nanoarchitectures for solar photocatalytic applications

Kubacka, A; Fernandez-Garcia, M; Colon, G
Chemical Reviews, 112 (2012) 1555-1614
DOI: 10.1021/cr100454n



Abstract

Advanced nanostructured materials that demonstrate useful activity under solar excitation in fields concerned with the elimination of pollutants, partial oxidation and the valorization of chemical compounds, water splitting and CO 2 reduction processes, are discussed. Point defects present in nanoparticulated anatase present both 5-fold- and 6-fold-coordinated titanium atoms, as well as 2-fold- and 3-fold-coordinated oxygens. The requirement of using sunlight as the excitation source for the degradation reaction demands, as a principal requirement, the modification of the electronic characteristics of a UV absorber system such as anatase-TiO 2. Some reports also indicate the need for large doping concentrations for N-doping in specific cases where notable changes in the valence band onset are subsequently observed. The effect of cetyltrimethylammonium bromide (CTAB) on the crystallization is reported by Yin et al. They showed that the presence of CTAB induces the appearance of BiOBr during the synthesis at 80°C using an aqueous method.

Marzo, 2012 · DOI: 10.1021/cr100454n




Nanotecnología en Superficies y Plasma

Quantification of low levels of fluorine content in thin films

Ferrer, FJ; Gil-Rostra, J; Terriza, A; Rey, G; Jimenez, C; Garcia-Lopez, J; Yubero, F
Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 274 (2012) 65-69
DOI: 10.1016/j.nimb.2011.11.042



Abstract

Fluorine quantification in thin film samples containing different amounts of fluorine atoms was accomplished by combining proton-Rutherford Backscattering Spectrometry (p-RBS) and proton induced gamma-ray emission (PIGE) using proton beams of 1550 and 2330 keV for p-RBS and PIGE measurements, respectively. The capabilities of the proposed quantification method are illustrated with examples of the analysis of a series of samples of fluorine-doped tin oxides, fluorinated silica, and fluorinated diamond-like carbon films. It is shown that this procedure allows the quantification of F contents as low as 1 at.% in thin films with thicknesses in the 100-400 nm range.

Marzo, 2012 · DOI: 10.1016/j.nimb.2011.11.042




Materiales Ópticos Multifuncionales

Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals

Colodrero, S; Forneli, A; Lopez-Lopez, C; Pelleja, L; Miguez, H; Palomares, E
Advanced Functional Materials, 22 (2012) 1303-1310
DOI: 10.1002/adfm.201102159



Abstract

A working electrode design based on a highly porous 1D photonic crystal structure that opens the path towards high photocurrents in thin, transparent, dye-sensitized solar cells is presented. By enlarging the average pore size with respect to previous photonic crystal designs, the new working electrode not only increases the device photocurrent, as predicted by theoretical models, but also allows the observation of an unprecedented boost of the cell photovoltage, which can be attributed to structural modifications caused during the integration of the photonic crystal. These synergic effects yield conversion efficiencies of around 3.5% by using just 2 mu m thick electrodes, with enhancements between 100% and 150% with respect to reference cells of the same thickness.

Marzo, 2012 · DOI: 10.1002/adfm.201102159




Materiales de Diseño para la Energía y Medioambiente

Electrostatic Induced Molecular Tilting in Self-Assembled Monolayers of n-Octadecylamine on Mica

Oviedo, J; San-Miguel, MA; Heredia-Guerrero, JA; Benitez, JJ
Journal of Physical Chemistry C, 116 (2012) 7099-7105
DOI: 10.1021/jp300829g



Abstract

Self-assembled monolayers of n-octadecylamine on mica (ODA/mica SAMs) have been investigated by atomic force microscopy (AFM) and by attenuated total reflectance infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopies. Topographic data characterizes a stable configuration with the alkyl skeleton tilted approximate to 46 degrees from the surface normal that is rationalized according to a well established structural alkyl chain packing model. Extended contact with air increases molecular tilting up to approximate to 58 degrees. ATR-FTIR and XPS reveal the presence of protonated amino groups within the monolayer and its increment upon exposure to air. The transition between both tilted states is explained assuming the protonation reaction as the driving force and introducing a model to evaluate an electrostatic repulsions term in the overall cohesive energy balance of the system. ODA molecules in the self-assembled monolayer respond to their spontaneous protonation by atmospheric water by tilting as a mechanism to relax the repulsions between -NH3+ heads.

Marzo, 2012 · DOI: 10.1021/jp300829g




Materiales Coloidales

Synthesis and Structure Resolution of RbLaF4

Rollet, AL; Allix, M; Veron, E; Deschamps, M; Montouillout, V; Suchomel, MR; Suard, E; Barre, M; Ocana, M; Sadoc, A; Boucher, F; Bessada, C; Massiot, D; Fayon, F
Inorganic Chemistry, 51 (2012) 2272-2282
DOI: 10.1021/ic202301e



Abstract

The synthesis and structure resolution of RbLaF4 are described. RbLaF4 is synthesized by solid-state reaction between RbF and LaF3 at 425 degrees C under a nonoxidizing atmosphere. Its crystal structure has been resolved by combining neutron and synchrotron powder diffraction data refinements (Pnma, a = 6.46281(2) angstrom, b = 3.86498(1) angstrom, c = 16.176:29(4) angstrom, Z = 4). One-dimensional Rb-87, La-139, and F-19 MAS NMR spectra have been recorded and are in agreement with the proposed structural model. Assignment of the F-19 resonances is performed on the basis of both F-19-La-139 J-coupling multiplet patterns observed in a heteronudear DQ-filtered J-resolved spectrum and F-19-Rb-87 HMQC MAS experiments. DFT calculations of both the F-19 isotropic chemical shieldings and the Rb-87, La-139 electric field gradient tensors using the GIPAW and PAW methods implemented in the CASTEP code are in good agreement with the experimental values and support the proposed structural model. Finally, the conductivity of RbLaF4 and luminescence properties of Eu-doped LaRbF4 are investigated.

Marzo, 2012 · DOI: 10.1021/ic202301e




Sonication induced reduction of the Ojen (Andalucia, Spain) vermiculite under air and under nitrogen

Poyato, J; Perez-Rodriguez, JL; Lerf, A; Wagner, FE
Ultrasonics Sonochemistry, 19 (2012) 373-375
DOI: 10.1016/j.ultsonch.2011.07.004




Reactividad de Sólidos - Química de Superficies y Catálisis

Nanostructured Spark Plasma Sintered Ce-TZP Ceramics

Cruz, SA; Poyato, R; Cumbrera, FL; Odriozola, JA
Journal of the American Ceramic Society, 95 (2012) 901-906
DOI: 10.1111/j.1551-2916.2011.04978.x



Abstract

In this work, spark plasma sintering (SPS) of 10 mol% CeO 2-doped ZrO 2 nanocrystalline powders, obtained by a two-step synthesis procedure, allows the preparation of fully densified nanostructured ceramics. The CeO 2-ZrO 2 powders with particle size below 100 nm are obtained after CeO 2 deposition on hydrothermally synthesized ZrO 2 particles by the impregnation method. Tetragonal CeO 2-ZrO 2 ceramics are obtained when sintering at 1200°C without holding time. A graded material containing tetragonal, monoclinic, and pyrochlore phases are obtained when sintering at 1200°C and for 5 min holding time. This is explained in terms of the gradual reduction of Ce 4+ to Ce 3+ species by carbon in the graphite environment during SPS. With the successful combination of the stabilizer coating technique and SPS, we achieve not only the stabilization of the tetragonal phase in the ceramics, but also good control of the grain size, by producing nanostructured ceramics with 40-70 nm grain sizes.

Marzo, 2012 · DOI: 10.1111/j.1551-2916.2011.04978.x




Nanotecnología en Superficies y Plasma

Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO2 thin films during growth at low temperatures

Macias-Montero, M; Garcia-Garcia, FJ; Alvarez, R; Gil-Rostra, J; Gonzalez, JC; Cotrino, J; Gonzalez-Elipe, AR; Palmero, A
Journal of Applied Physics, 111 (2012) 054312 (6 pages)
DOI: 10.1063/1.3691950



Abstract

Growth of amorphous SiO2 thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O- ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO2 thin films by magnetron sputtering at low temperatures, controlled by the amount of O2 in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

Marzo, 2012 · DOI: 10.1063/1.3691950




Química de Superficies y Catálisis

CO-Induced Morphology Changes in Zn-Modified Ceria: A FTIR Spectroscopic Study

Penkova, A; Laguna, OH; Centeno, MA; Odriozola, JA
Journal of Physical Chemistry C, 116 (2012) 5747-5756
DOI: 10.1021/jp210996b



Abstract

A FTIR study of the CO adsorption on a Zn-modified ceria is presented. The results indicate that at lower activation temperatures only Ce 4+ carbonyls were detected, which were reduced with the increase of the activation temperature. At higher activation temperatures, up to three Zn 2+ carbonyls were also identified according to the arrangement of the Zn 2+ cations. The consecutive CO adsorptions demonstrated an irreversible modification of the surface, resulting in an agglomeration of the zinc cations. A stepwise conversion of the isolated Zn 2+ carbonyls into carbonyls of the closely situated zinc cations followed by formation of bigger zinc oxide clusters was observed. The carbon monoxide coordinated on the isolated Zn 2+ cations at the interface with ceria reacts with the lattice oxygen leading to formation of oxygen vacancies. An insight into the origin of the activation during the CO oxidation process is proposed.

Marzo, 2012 · DOI: 10.1021/jp210996b




Reactividad de Sólidos

Inverse core-rim microstructure in (Ti,Ta)(C,N)-based cermets developed by a mechanically induced self-sustaining reaction

Chicardi, E; Cordoba, JM; Sayagues, MJ; Gotor, FJ
International Journal of Refractory Metals & Hard Materials, 31 (2012) 39-46
DOI: 10.1016/j.ijrmhm.2011.09.003



Abstract

Cermets with a nominal composition (Tia(0.8)Ta(0.2)C(0.5)N(0.5)-20 wt.% Co) were synthesised by a mechanically induced self-sustaining reaction (MSR) process from stoichiometric elemental powder blends. The MSR allowed the production of a complex (Ti,Ta)(C,N) solid solution, which was the raw material used for the sintering process. The pressureless sintering process was performed at temperatures between 1400 degrees C and 1600 degrees C in an inert atmosphere. The microstructural characterisation showed a complex microstructure composed of a ceramic phase with an unusual inverse core-rim structure and a Ti-Ta-Co intermetallic phase that acted as the binder.

Marzo, 2012 · DOI: 10.1016/j.ijrmhm.2011.09.003




Química de Superficies y Catálisis

Sub-ambient CO oxidation over Au/MOx/CeO2-Al2O3 (M = Zn or Fe)

Reina, TR; Ivanova, S; Dominguez, MI; Centeno, MA; Odriozola, JA
Applied Catalysis A-General, 419-420 (2012) 58-66
DOI: 10.1016/j.apcata.2012.01.012



Abstract

A series of ZnO and Fe 2O 3 modified ceria/alumina supports and their corresponding gold catalyst were prepared and studied in the CO oxidation reaction. ZnO-doped solids show a superior catalytic activity compared to the bare CeO 2-Al 2O 3, which is attributed to the intimate contact of the ZnO and CeO 2 phases, since an exchange of the lattice oxygen occurs at the interface. In a similar way, Fe 2O 3-modified supports increase the ability of the CeO 2-Al 2O 3 solids to eliminate CO caused by both the existence of Ce-Fe contact surface and the Fe 2O 3 intrinsic activity. All of the gold catalysts were very efficient in oxidising CO irrespective of the doping metal oxide or loading, with the ZnO containing systems better than the others. The majority of the systems reached total CO conversion below room temperature with the ZnO and Fe 2O 3 monolayer loaded systems the most efficient within the series.

Marzo, 2012 · DOI: 10.1016/j.apcata.2012.01.012




Materiales Nanoestructurados y Microestructura

An international round-robin calibration protocol for nanoindentation measurements

Cabibbo, M; Ricci, P; Cecchini, R; Rymuza, Z; Sullivan, J; Dub, S; Cohen, S
Micron, 43 (2012) 215-222
DOI: 10.1016/j.micron.2011.07.016



Abstract

Nanoindentation has become a common technique for measuring the hardness and elastic–plastic properties of materials, including coatings and thin films. In recent years, different nanoindenter instruments have been commercialised and used for this purpose. Each instrument is equipped with its own analysis software for the derivation of the hardness and reduced Young's modulus from the raw data. These data are mostly analysed through the Oliver and Pharr method. In all cases, the calibration of compliance and area function is mandatory. The present work illustrates and describes a calibration procedure and an approach to raw data analysis carried out for six different nanoindentation instruments through several round-robin experiments. Three different indenters were used, Berkovich, cube corner, spherical, and three standardised reference samples were chosen, hard fused quartz, soft polycarbonate, and sapphire. It was clearly shown that the use of these common procedures consistently limited the hardness and reduced the Young's modulus data spread compared to the same measurements performed using instrument-specific procedures. The following recommendations for nanoindentation calibration must be followed: (a) use only sharp indenters, (b) set an upper cut-off value for the penetration depth below which measurements must be considered unreliable, (c) perform nanoindentation measurements with limited thermal drift, (d) ensure that the load–displacement curves are as smooth as possible, (e) perform stiffness measurements specific to each instrument/indenter couple, (f) use Fq and Sa as calibration reference samples for stiffness and area function determination, (g) use a function, rather than a single value, for the stiffness and (h) adopt a unique protocol and software for raw data analysis in order to limit the data spread related to the instruments (i.e. the level of drift or noise, defects of a given probe) and to make the H and Er data intercomparable.

Febrero, 2012 · DOI: 10.1016/j.micron.2011.07.016




Materiales Nanoestructurados y Microestructura

Public concern over ecotoxicology risks from nanomaterials: Pressing need for research-based information

Lapresta-Fernandez, A; Fernandez, A; Blasco, J
Environment International, 39 (2012) 148-149
DOI: 10.1016/j.envint.2011.10.012



Abstract

[No abstract available]

Febrero, 2012 · DOI: 10.1016/j.envint.2011.10.012




Materiales Nanoestructurados y Microestructura

Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms

Lapresta-Fernandez, A; Fernandez, A; Blasco, J
TrAC Trends in Analytical Chemistry, 32 (2012) 40-59
DOI: 10.1016/j.trac.2011.09.007



Abstract

Engineered nanoparticles (ENPs) are increasingly being incorporated into commercial products. A better understanding is required of their environmental impacts in aquatic ecosystems.

This review deals with the ecotoxicity effects of silver and gold ENPs (AgNPs and AuNPs) in aquatic organisms, and considers the means by which these ENPs enter aquatic environments, their aggregation status and their toxicity. Since ENPs are transported horizontally and vertically in the water column, we discuss certain factors (e.g., salinity and the presence of natural organic materials), as they cause variations in the degree of aggregation, size range and ENP toxicity. We pay special attention to oxidative stress induced in organisms by ENPs.

We describe some of the main analytical methods used to determine reactive oxygen species, antioxidant enzyme activity, DNA damage, protein modifications, lipid peroxidation and relevant metabolic activities. We offer an overview of the mechanisms of action of AgNPs and AuNPs and the ways that relevant environmental factors can affect their speciation, agglomeration or aggregation, and ultimately their bio-availability to aquatic organisms.

Finally, we discuss similarities and differences in the adverse effects of ENPs in freshwater and salt-water systems.

Febrero, 2012 · DOI: 10.1016/j.trac.2011.09.007




Materiales Ópticos Multifuncionales

Enhanced diffusion through porous nanoparticle optical multilayers

Lopez-Lopez, C; Colodrero, S; Raga, SR; Lindstrom, H; Fabregat-Santiago, F; Bisquert, J; Miguez, H
Journal of Materials Chemistry, 22 (2012) 1751-1757
DOI: 10.1039/c1jm15202e



Abstract

Herein we demonstrate improved mass transport through nano-particle one-dimensional photonic crystals of enhanced porosity. Analysis is made by impedance spectroscopy using iodine and ionic liquid based electrolytes and shows that newly created large pores and increased porosity improve the diffusion of species through the photonic crystal. This achievement is based on the use of a polymeric porogen (polyethylene glycol), which is mixed with the precursor suspensions used for the deposition of nanoparticle TiO2 and SiO2 layers and then eliminated to generate a more open interconnected void network, as confirmed by specular reflectance porosimetry. A compromise between pore size and optical quality of these periodic structures is found.

Febrero, 2012 · DOI: 10.1039/c1jm15202e




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Rapid microwave-assisted synthesis of one-dimensional silver–H2Ti3O7 nanotubes

Rodriguez-Gonzalez, V; Obregon-Alfaro, S; Lozano-Sanchez, LM; Lee, SW
Journal of Molecular Catalysis A-Chemical, 353 (2012) 163-170
DOI: 10.1016/j.molcata.2011.11.020



Abstract

The formation of silver hydrogen trititanate nanotubes, based on the controllable microwave-assisted hydrothermal nanocrystalline TiO2 transition, was investigated by means of XRD, UV–vis–DRS, Raman, FESEM and HRTEM. The results show that the rapid formation of H-trititanate nanotubes is achieved by self-assemblage of silver nanoparticles in which the lamellar intermediates react with NaOH in hydrothermal conditions. The presence of Ag° nanoparticles in the precursor promotes rapid and more complete formation of layered H2Ti3O7 nanotubes. After reacting for 4 h without subsequent thermal treatment, the inner diameters of the cylinder-like nanotubes are in the range of 3.6–4.0 nm, while their outer diameters are in the range of 7.6–8 nm. In addition, some straight nanotubes form bundles which are hundreds of nanometers in length. As-synthesized ultrathin nanotubes and crystalline precursors were evaluated by methyl orange dye (MOD) UV photo-oxidation. The complete degradation of MOD is achieved after 3.5 h of UV irradiation in the presence of silver–TiO2 nanocomposites, resulting in 50% of dye mineralization.

Febrero, 2012 · DOI: 10.1016/j.molcata.2011.11.020




Operando DRIFTS study of the redox and catalytic properties of CuO/Ce1−xTbxO2−δ (x = 0–0.5) catalysts: evidence of an induction step during CO oxidation

Martinez-Arias, A.; Hungria, A. B.; Fernandez-Garcia, M.; Iglesias-Juez, A.; Soria, J.; Conesa, J. C.; Anderson, J. A.; Munuera, G.
Physical Chemistry Chemical Physics, 14 (2012) 2144-2151
DOI: 10.1039/C1CP23298C



Abstract

Catalysts of 1 wt% copper oxide supported on cerium oxide or cerium–terbium mixed oxides are comparatively examined with respect to their redox and catalytic properties for CO oxidation. Characterization of the catalysts had shown that they contain highly dispersed CuO-type entities on the corresponding nanostructured fluorite supports with copper dispersion increasing with increasing amounts of terbium in the support. In contrast, the CO oxidation catalytic activity decreases with increasing amounts of terbium in the support. On the basis of operando-DRIFTS experiments, one of the factors that could explain such behaviour is related to the greater difficulty in generating reduced copper sites active for the reaction in the presence of terbium, which in turn is evidenced to constitute an induction stage. Analysis of the redox properties is complemented by XPS which confirms the greater resistance to copper reduction in the presence of terbium.

Febrero, 2012 · DOI: 10.1039/C1CP23298C




Reactividad de Sólidos

Thermal behaviour of ground and unground acid leached vermiculite

Perez-Maqueda, LA; Maqueda, C; Perez-Rodriguez, JL; Subrt, J; Cerny, Z; Balek, V
Journal of Thermal Analysis and Calorimetry, 107 (2012) 431-438
DOI: 10.1007/s10973-011-1480-2



Abstract

Acid leaching of vermiculite is an interesting procedure to prepare high surface area porous silica. Thermal behaviour of unground and ground vermiculite leached with HCl solutions has been studied by TG, DTA, ETA and high temperature XRD. Important differences have been observed in the thermal behaviour of unground and ground vermiculite after the acid treatments. Thus, for the acid-treated unground vermiculite, dehydrated vermiculite, enstatite and cristobalite were formed during the heating, while for the acid-treated ground vermiculite only iron oxides and cristobalite phases were observed. Structural modifications due to acid treatment were responsible for changes in the transport properties determined by ETA for the vermiculite samples.

Febrero, 2012 · DOI: 10.1007/s10973-011-1480-2




Nanotecnología en Superficies y Plasma

Electrochromic Behavior of WxSiyOz Thin Films Prepared by Reactive Magnetron Sputtering at Normal and Glancing Angles

Gil-Rostra, J; Cano, M; Pedrosa, JM; Ferrer, FJ; Garcia-Garcia, F; Yubero, F; Gonzalez-Elipe, AR
ACS Applied Materials & Interfaces, 4 (2012) 628-638
DOI: 10.1021/am2014629



Abstract

This work reports the synthesis at room temperature of transparent and colored WxSiyOz thin films by magnetron sputtering (MS) from a single cathode. The films were characterized by a large set of techniques including X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), Fourier transform infrared (FT-IR), and Raman spectroscopies. Their optical properties were determined by the analysis of the transmission and reflection spectra. It was found that both the relative amount of tungsten in the W–Si MS target and the ratio O2/Ar in the plasma gas were critical parameters to control the blue coloration of the films. The long-term stability of the color, attributed to the formation of a high concentration of W5+ and W4+ species, has been related with the formation of W–O–Si bond linkages in an amorphous network. At normal geometry (i.e., substrate surface parallel to the target) the films were rather compact, whereas they were very porous and had less tungsten content when deposited in a glancing angle configuration. In this case, they presented outstanding electrochromic properties characterized by a fast response, a high coloration, a complete reversibility after more than one thousand cycles and a relatively very low refractive index in the bleached state.

Febrero, 2012 · DOI: 10.1021/am2014629




Nanotecnología en Superficies y Plasma - Materiales Nanoestructurados y Microestructura - Tribología y Protección de Superficies

Magnetron sputtered a-SiO xN y thin films: A closed porous nanostructure with controlled optical and mechanical properties

Godinho, V; Rojas, TC; Fernandez, A
Microporous and Mesoporous Materials, 149 (2012) 142-146
DOI: 10.1016/j.micromeso.2011.08.018



Abstract

Amorphous silicon oxynitride coatings with similar composition and different closed porosity were prepared by magnetron sputtering. Pores size, shape and distribution were evaluated by scanning electron microscopy and transmission electron microscopy. Raman and EELS analysis proved that the pores are filled with molecular nitrogen trapped during deposition. The mechanical properties evaluated by nanoindentation shows that the presence of closed nano-porosity does not compromise the mechanical integrity of these coatings. The introduction of closed porosity is shown as a good strategy for obtaining lower dielectric constant silicon oxynitride coatings with similar composition while keeping the good mechanical properties (∼13 GPa) characteristic of this type of coatings. The presence of close porosity gives also a good stability of coatings properties as compared to open porosity microstructures where gas phase in contact with the coatings can affect coatings properties.

Febrero, 2012 · DOI: 10.1016/j.micromeso.2011.08.018




Materiales Nanoestructurados y Microestructura - Tribología y Protección de Superficies - Materiales Coloidales

Microwave-Assisted Synthesis and Luminescence of Mesoporous REDoped YPO4 (RE = Eu, Ce, Tb, and Ce plus Tb) Nanophosphors with Lenticular Shape

Rodriguez-Liviano, S; Aparicio, FJ; Rojas, TC; Hungria, AB; Chinchilla, LE; Ocana, M
Crystal Growth and Design, 12 (2012) 635-645
DOI: 10.1021/cg201358c



Abstract

Mesoporous tetragonal RE:YPO 4 nanophosphors (RE = Eu, Ce, Tb, and Ce + Tb) with a lenticular morphology, narrow size distribution, and high surface area have been prepared by an homogeneous precipitation procedure consisting of aging, at low temperature (80-120 °C) in a microwave oven, ethylene glycol solutions containing only yttrium acetylacetonate and phosphoric acid. This synthesis method involves important advantages such as its simplicity, rapidness (reaction time = 7 min), and high reaction yields. The mechanism of nanoparticle growth has been also addressed finding that the lenticular nanoparticles are formed through an ordered aggregation of smaller entities, which explains their porosity. In all cases, the doping levels were systematically varied in order to optimize the nanophosphors luminescence. All optimum nanophosphors presented a high luminescence quantum yield (QY). In particular, for the Eu and Tb doped systems, the obtained QY values (60% for Eu and 80% for Tb) were the highest so far reported for this kind of nanomaterial. The morphological, microstructural, and luminescent properties of these nanophosphors and their dispersibility in water make them suitable for biomedical applications.

Febrero, 2012 · DOI: 10.1021/cg201358c




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

In Situ XAS Study of Synergic Effects on Ni-Co/ZrO2 Methane Reforming Catalysts

Gonzalez-delaCruz, VM; Pereniguez, R; Ternero, F; Holgado, JP; Caballero, A
Journal of Physical Chemistry C, 116 (2012) 2919-2926
DOI: 10.1021/jp2092048



Abstract

Four different mono and bimetallic Ni–Co/ZrO2 catalysts have been studied by means of in situ XAS, X-ray diffraction, TPR, and measurements of the catalytic activity in the dry reforming reaction of methane (DRM). Even though the cobalt monometallic system has no activity for the methane reforming reaction, both bimetallic catalysts (with 1:1 and 1:2 Ni/Co ratio, respectively), showed a better activity and stability than the nickel monometallic system. The XRD data indicate that a mixed cobalt–nickel spinel is formed by calcination of the precursor solids, leading to the formation of an alloy of both metals after reduction in hydrogen. In situ XAS experiments showed a much better resistance of metals in the bimetallic systems to be oxidized under reaction conditions at temperatures until 750 °C. After these results, we proposed the formation in the bimetallic systems of a more reducible nickel–cobalt alloy phase, which remains completely metallic in contact with the CO2/CH4 reaction mixture at any temperature. The presence of adjacent nickel and cobalt sites seems to avoid the deactivation of cobalt in the DRM reaction. In the case of cobalt sites, the presence of adjacent nickel atoms seems to prevent the deposition of carbon over the cobalt sites, now showing its higher activity in the dry reforming reaction. Simultaneously, this higher activity of the cobalt sites in the bimetallic system produces more hydrogen as a product, maintaining the nickel atoms completely reduced under reaction conditions. This synergic effect accounts for the better performance of the bimetallic systems and points at both, the oxidation state of nickel particles under reaction conditions and the carbon deposition processes, as important factors responsible for differences in catalytic activities and stabilities in this hydrocarbon reaction.

Febrero, 2012 · DOI: 10.1021/jp2092048




Materiales de Diseño para la Energía y Medioambiente

Effect of oxidation on the compressive strength of sintered SiC-fiber bonded ceramics

Ramirez-Rico, J; Martinez-Fernandez, J; Singh, M
Materials Science and Engineering A, 534 (2012) 394-399
DOI: 10.1016/j.msea.2011.11.085



Abstract

The compressive strength of SiC-fiber bonded ceramics obtained from hot-pressed amorphous Si-Al-C-O fibers and its degradation by high temperature exposure to an oxidizing environment was studied. Compressive strength was measured at room temperature as a function of strain rate, orientation, and oxidation temperature. Weight loss was monitored as a function of exposure time in atmospheric air at temperatures ranging from 800 to 1600°C, for times ranging from 0.5 to 5. h. Room-temperature compressive strength had a moderate decrease after exposures at 800°C associated to carbon burnout; increased for exposures in the range 1000-1500°C due to a defect-blunting action of the silica scale; and decreased significantly at 1600°C due to extensive surface recession.

Febrero, 2012 · DOI: 10.1016/j.msea.2011.11.085




Materiales Ópticos Multifuncionales

Collective osmotic shock in ordered materials

Paul Zavala-Rivera, Kevin Channon, Vincent Nguyen, Easan Sivaniah, Dinesh Kabra, Richard H. Friend, S. K. Nataraj, Shaheen A. Al-Muhtaseb, Alexander Hexemer, Mauricio E. Calvo & Hernan Miguez
Nature Materials, 11 (2012) 53–57
DOI: 10.1038/nmat3179



Abstract

Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.

Enero, 2012 · DOI: 10.1038/nmat3179




Química de Superficies y Catálisis

Preferential oxidation of CO (CO-PROX) over CuOx/CeO2 coated microchannel reactor

Laguna, OH; Ngassa, EM; Oraa, S; Alvarez, A; Dominguez, MI; Romero-Sarria, F; Arzamendi, G; Gandia, LM; Centeno, MA; Odriozola, JA
Catalysis Today, 180 (2012) 105-110
DOI: 10.1016/j.cattod.2011.03.024



Abstract

The general aspects of the synthesis and characterization results of a CuO x/CeO 2 catalyst were presented. In addition the principal steps for manufacturing a microchannel reactor and for the coating of the CuO x/CeO 2 catalyst onto the microchannels walls, were also summarized. The catalytic activity of this microchannel reactor during the preferential oxidation of CO (CO-PROX) was evaluated employing a feed-stream that simulates a reformate off-gas after the WGS unit. Two activation atmospheres were studied (H 2/N 2 and O 2/N 2). The reducing pretreatment improved the resistance to deactivation by formation of carbonaceous species over the catalyst surface at high temperatures. The presence of H 2O and CO 2 in the feed-stream was also analyzed indicating that the adsorption of CO 2 inhibited the conversion of CO at lower temperatures because these compounds modified the active sites through the formation of carbonaceous species on the catalyst surface. Finally, the experimental results of the microreactor performance were compared with CFD simulations that were carried out using a kinetic for the CuO x/CeO 2 powder catalyst. The experimental results were reasonably well described by the model, thus confirming its validity.

Enero, 2012 · DOI: 10.1016/j.cattod.2011.03.024




Materiales de Diseño para la Energía y Medioambiente

Microstructure, composition and P-T conditions of rutile from diamondiferous gneiss of the Saxonian Erzgebirge, Germany

Escudero, A; Miyajima, N; Langenhorst, F
Chemie der erde-geochemistry, 72 (2012) 25-30
DOI: 10.1016/j.chemer.2011.11.001



Abstract

The chemical composition and microstructure of rutile grains in a ultra-high pressure metamorphic gneiss of the Saxonian Erzgebirge, Germany have been studied by Raman spectroscopy, SEM, EMPA and TEM. Rutile inclusions in garnet contain free dislocations, iron-enriched dislocations and exsolved ilmenite lamellae, while subgrain boundaries are observed in rutile grains of the rock matrix. The previously reported alpha-PbO2 type TiO2 phase could not be confirmed by our TEM observations. On the basis of Zr solubility in the rutile and the presence of microdiamonds, minimum metamorphic peak conditions of 3.95 GPa and 915 degrees C are estimated.

Enero, 2012 · DOI: 10.1016/j.chemer.2011.11.001




Materiales Nanoestructurados y Microestructura

Analysis and application of the theories that rationalize the crystalline structures of fluorite-related rare earth oxides

Lopez-Cartes, C; Perez-Omil, JA; Rodriguez-Izquierdo, JM; Calvino, JJ
Catalysis Today, 180 (2012) 161-180
DOI: 10.1016/j.cattod.2011.04.032



Abstract

The main current theories dealing with the crystalline structures of the fluorite related rare earth oxides, including those corresponding to reduced oxides, one based on the distribution of the coordination defect inside the fluorite structure, and the other which proposes the establishment of modular sequences constituted by modules with fluorite structure, are presented and comparatively explored in detail. Our in-depth analysis of both approximations indicates that they in fact provide smart and efficient rationalizations of the currently known intermediate rare earth oxides structures. We prove however that the strict application of the principles and rules proposed by each theory does not yield unique and unambiguous results for most of the members of the homologous series, as it has been claimed up to now. Moreover, the controversy about the reliability of these two, apparently different and competing, theories is definitely clarified and the exact equivalence of their structural predictions is demonstrated. Finally, we propose new extra systematization rules, not considered up to now in neither of these theoretical approaches, to overcome the observed limitations to properly rationalize the structure of this so technologically important family of oxides.

Enero, 2012 · DOI: 10.1016/j.cattod.2011.04.032




Materiales Nanoestructurados y Microestructura

Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings

Sanchez-Lopez, JC; Abad, MD; Carvalho, I; Galindo, RE; Benito, N; Ribeiro, S; Henriques, M; Cavaleiro, A; Carvalho, S
Surface and Coatings Technology, 206 (2012) 2192-2198
DOI: 10.1016/j.surfcoat.2011.09.059



Abstract

Surface modification of bulk materials used in biomedical applications has become an important prerequisite for better biocompatibility. In particular, to overcome the particle generation, low-wear coatings based on carbon (nitrogen) and containing antimicrobial elements such as silver are promising candidates. Thus, the present work explores the potentialities of silver-containing carbonitride-based (Ag-TiCN) thin films prepared by direct current unbalanced reactive magnetron sputtering. The silver content in the coatings was varied from 0 to 26.7at.% by changing the targets and the fraction of C 2H 2 and N 2 in the gas mixture with Ar. The obtained Ag-TiCN based coatings were characterized in terms of composition and microstructure. Mechanical and tribological properties of the films were studied by nanoindentation and reciprocating pin-on disk testing in a fetal bovine serum solution, respectively. Raman, scanning electron microscope and energy dispersive X-ray analysis was carried out in the contact region after tribological tests to obtain information about the friction mechanism. The cytotoxicity of the coatings was assessed by in vitro tests using fibroblast cells. The coatings comprised a mixture of TiC xN 1-x, Ag and a-C(N) x phases whose relative proportion varied depending on the Ag/Ti ratio. The mechanical, tribological and cytotoxicity properties were correlated with the chemical and phase composition. When the Ag/Ti ratios were below 0.20 (Ag contents <6.3at.%) the films resulted harder (~18GPa) with higher wear resistance (~10 -6mm 3/Nm), showing similar friction coefficient (~0.3) and good biocompatibility.

Enero, 2012 · DOI: 10.1016/j.surfcoat.2011.09.059




Nanotecnología en Superficies y Plasma

Analysis of multifunctional titanium oxycarbide films as a function of oxygen addition

Chappe, JM; Fernandes, AC; Moura, C; Alves, E; Barradas, NP; Martin, N; Espinos, JP; Vaz, F
Surface and Coatings Technology, 206 (2012) 2525-2534
DOI: 10.1016/j.surfcoat.2011.11.005



Abstract

Reactive magnetron sputtering was used to deposit titanium oxycarbide thin films. The overall set of results showed that the oxygen flow rate, and thus the composition of the atmosphere in the deposition chamber, controls the composition of the titanium oxycarbide thin films obtained by reactive sputtering. Rutherford Backscattering Spectroscopy analysis revealed the existence of three major types of films, indexed to their particular composition ratios. A detailed study by X-ray photoelectron spectroscopy was carried out in order to characterize the evolution of the Tisingle bondC, Csingle bondO and Csingle bondC bonds induced by the increase of the oxygen partial pressure, which was found to be closely related with the different zones of composition that were suggested. Micro-Raman spectroscopy and X-ray diffraction measurements allowed describing the complex nature of the film structure, namely in what concerns different phases and their evolution, texture phenomena and grain size evolution as a function of the particular composition and film types (different zones). Electrical conductivity revealed a transition from a metallic to a semi-conducting behavior as a function of the oxygen concentration in the films, in good agreement with the different zones that were suggested. Similarly, optical properties supported this gradual change and for oxygen contents higher than 67 at.%, the films exhibited typical reflectance of insulator materials (interferences) in the UV, visible and near IR regions.

Enero, 2012 · DOI: 10.1016/j.surfcoat.2011.11.005




Redox and catalytic properties of CuO/CeO2 under CO + O2 + NO: Promoting effect of NO on CO oxidation

Martinez-Arias, A.; Hungria, A. B.; Iglesias-Juez, A.; Fernandez-Garcia, M.; Anderson, J. A.; Conesa, J. C.; Munuera, G.; Soria, J.
Catalysis Today, 180 (2012) 81-87
DOI: 10.1016/j.cattod.2011.02.014



Abstract

A CuO/CeO2 catalyst has been studied with respect to its catalytic activity for CO oxidation under stoichiometric conditions employing either O2 or O2–NO mixture as oxidants. The obtained results are rationalised on the basis of analysis of redox properties upon interaction with CO and O2–NO by EPR as well as by redox/catalytic analysis by operando-DRIFTS. These provide useful insight into the processes involved during NO reduction, for which two well differentiated steps associated to a change in the type of active centres during the course of the reaction are evidenced. Nevertheless, the most interesting result is related to observation of a novel promoting effect of NO on CO oxidation. This is explained mainly on the basis of DRIFTS results and appears to be associated with phenomena of adsorption/desorption of NOx species at interfacial positions which apparently activate such interfacial region allowing formation of greater amounts of active reduced copper centres in the presence of NO.

Enero, 2012 · DOI: 10.1016/j.cattod.2011.02.014




Materiales Nanoestructurados y Microestructura

Nanoscale mechanically induced structural and electrical changes in Ge 2Sb 2Te 5 films

Cecchini, R; Benitez, JJ; Sanchez-Lopez, JC; Fernandez, A
Journal of Applied Physics, 111 (2012) 016101 (3 pages)
DOI: 10.1063/1.3673592



Abstract

We demonstrate that the microstructure and electrical properties of Ge2Sb2Te5 films can be changed by a nanoscale mechanical process. Nanoscratching is used to define modified areas onto an as-deposited crystalline Ge2Sb2Te5 film. Scanning tunneling microscopy measurements show that the modified areas have a very low electrical conductivity. Micro-Raman measurements indicate that the mechanically induced microstructural changes are consistent with a phase transformation from crystalline to amorphous, which can be reversed by laser irradiation.

Enero, 2012 · DOI: 10.1063/1.3673592




Fotocatálisis Heterogénea: Aplicaciones

Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO2: Effect of the Addition of Blue Phosphors

Murcia, JJ; Hidalgo, MC; Navio, JA; Vaiano, V; Ciambelli, P; Sannino, D
International Journal of Photoenergy, 2012 (2012) 687262
DOI: 10.1155/2012/687262



Abstract

Ethanol oxidative dehydrogenation over Pt/TiO2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO2 with a loading of 0.5 wt% of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO2 catalyst, keeping at the same time the high selectivity to acetaldehyde.

Enero, 2012 · DOI: 10.1155/2012/687262




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts

Todorova, S; Naydenov, A; Kolev, H; Holgado, JP; Ivanov, G; Kadinov, G; Caballero, A
Applied Catalysis A-General, 413-414 (2012) 43-51
DOI: 10.1016/j.apcata.2011.10.041



Abstract

Mono- and bi-component cobalt and manganese samples were prepared by impregnation of silica with aqueous solutions of Co(NO3)2·6H2O and/or Mn(NO3)2·6H2O. The bi-component samples were obtained by a common solution of Co- and Mn nitrates (CoMn-MS) or by deposition of cobalt on calcined Mn sample (Co + Mn). The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis and tested in reaction of complete n-hexane oxidation. It was observed that the well crystalline cobalt oxide partially covers poorly crystalline manganese oxide in the Co + Mn catalysts, while finely divided oxides (MnO2 and Mn2O3, Co3O4) are present on the surface of the (CoMn-MS) sample. Four Langmuir–Hinshelwood and two Mars–van Krevelen models were fitted with the experimental data from the catalytic tests. According to the model calculations and results from instrumental methods, the reaction pathway over single component manganese and bi-component Co-Mn catalysts proceeds through Mars–van Krevelen mechanism (the oxidation of the catalyst surface being the rate determining step), while Langmuir–Hinshelwood mechanism is more probable for the Co sample. A considerable increase in activity for the sample obtained from a mixed solution is explained by low crystallinity, simultaneous presence of Mn4+–Mn3+ and enrichment of the surface in oxygen species.

Enero, 2012 · DOI: 10.1016/j.apcata.2011.10.041




Analysis of the restoration of an historical organ: The case study of the Cavaillé-Coll organ of La Merced Church in Burgos, Spain

Justo-Estebaranz, A; Herrera, LK; Duran, A; Siguenza, B; de Haro, MCJ; Laguna, O; Justo, A
Studies in Conservation, 57 (2012) 21-28
DOI: 10.1179/2047058411Y.0000000001



Abstract

The restoration of the Cavaille-Coll Romantic organ housed in La Merced Church of Burgos, Spain is described in this paper. The organ was affected by a fire that took place in the church. The effect of the fire on the pipes differed depending on their location within the instrument. A combination of analytical techniques (X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray analysis, particle-induced X-ray emission, metallography, and specific density) allowed the accurate determination of the microstructures and compositions of the alloys used to make the different pipes of the organ, some of which had a high tin content and others which had a high lead content. The most damaged pipes were replaced by reconstructed pipes made out of metallic sheets of the same composition as the originals, to ensure a historically accurate sound.

Enero, 2012 · DOI: 10.1179/2047058411Y.0000000001




Materiales y Procesos Catalíticos de Interés Ambiental y Energético

Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol-gel method

Melian, EP; Diaz, OG; Rodriguez, JMD; Colon, G; Navio, JA; Pena, JP
Applied Catalysis A-General, 411 (2012) 153-159
DOI: 10.1016/j.apcata.2011.10.033



Abstract

TiO 2 nanoparticles have been prepared by sol-gel precipitation and further hydrothermal treatment. In this way, the effect of the hydrothermal treatment on the structural properties and photocatalytic activity of sol-gel synthesized catalysts has been investigated. These catalysts have been produced by hydrolysis of a mixture of isopropanol-titanium tetraisopropoxide (iPrOH-TiiP). The prepared photocatalysts were characterized by means of X-ray diffraction (XRD), surface area analysis (BET), transmission microscopy (TEM), thermogravimetric analysis (TG), scanning electron microscopy (SEM) analysis, diffuse reflectance, sedimentability analysis and aggregate size study. Besides, the structural evolution with the temperature of the photocatalysts treated or not hydrothermally was studied. It was observed that the calcination produces approaching between the characteristics of both sets of photocatalysts. The photocatalytic activity of the obtained photocatalysts was investigated, using phenol as a model pollutant. The calcination temperature is the most remarkable factor that can affect the ultimate photocatalytic activity of the prepared photocatalysts. However, the hydrothermal treatment previous to calcination led to obtain photocatalysts which exhibit larger photocatalytic activity than their homologous photocatalysts without hydrothermal treatment. The obtained photocatalyst TiO 2ht600 exhibits the same photocatalytic activity per surface area than the commercial TiO 2 Degussa P25 but with much faster sedimentability.

Enero, 2012 · DOI: 10.1016/j.apcata.2011.10.033




Materiales de Diseño para la Energía y Medioambiente

Aluminum incorporation in alpha-PbO2 type TiO2 at pressures up to 20 GPa

Escudero, A; Langenhorst, F
Physics of the Earth and Planetary Interiors, 190 (2012) 87-94
DOI: 10.1016/j.pepi.2011.11.002



Abstract

Aluminum incorporation into the high pressure polymorph of TiO2 with the structure of alpha-PbO2 has been studied from 10 to 20 GPa and 1300 degrees C by XRD, high-resolution Al-27 MAS-NMR and TEM. Al-doped alpha-PbO2 type TiO2 can be recovered at atmospheric pressure. Al2O3 solubility in alpha-PbO2 type TiO2 increases with increasing the synthesis pressure. The alpha-PbO2 type TiO2 polymorph is able to incorporate up to 35 wt.% Al2O3 at 13.6 GPa and 1300 degrees C, being the substitution of Ti4+ by Al3+ on normal octahedral sites and the formation of oxygen vacancies the mechanism of solubility. The transition to the higher pressure TiO2 polymorph with the ZrO2 baddeleyite structure, akaogiite, has not been observed in the quenched samples at room pressure. The microstructure of the recovered sample synthesized at 16 GPa and 1300 degrees C points to the existence of an intermediate non-quenchable aluminum titanium oxide phase at these conditions.

Enero, 2012 · DOI: 10.1016/j.pepi.2011.11.002




Reactividad de Sólidos

Characterisation of ternary TixV1-xNy nitride prepared by mechanosynthesis

Roldan, MA; Alcala, MD; Real, C
Ceramics Intenational, 38 (2012) 687-693
DOI: 10.1016/j.ceramint.2011.07.057



Abstract

In the present manuscript the authors have systematically investigated the composition and microstructure of a series of ternary nitrides (TixV1-xNy) (0.0 <= x <= 1.0) prepared by mechanosynthesis, using XRD, SEM, EELS, XAS and TGA. The ternary titanium-vanadium nitride (TixV1-xNy) has been obtained in all range of compositions by the mechanical treatment of the two metals under nitrogen pressure in a planetary mill with a maximum milling time of 3 h and without any post-heating treatment. The materials' microhardnesses were measured after sinterisation and compared to those reported in the literature for these types of materials. When compared with the previously reported data for bulk samples, these values are similar or higher for compositions within the range x = 0.5 to x = 0.77 (TixV1-xN).

Enero, 2012 · DOI: 10.1016/j.ceramint.2011.07.057




Nanotecnología en Superficies y Plasma

Adsorption Geometry Determines Catalytic Selectivity in Highly Chemoselective Hydrogenation of Crotonaldehyde on Ag(111)

Brandt, Katrin; Chiu, May E.; Watson, David J.; Tikhov, Mintcho S.; Lambert, Richard M.
Journal of Physical Chemistry C, 116 (2012) 4605-4611
DOI: 10.1021/jp208831h



Abstract

The chemoselective hydrogenation of crotonaldehyde to crotyl alcohol was studied by temperature-programmed desorption/reaction, high-resolution XPS, and NEXAFS. The organic molecule adsorbed without decomposition, all three possible hydrogenation products were formed and desorbed, and the clean overall reaction led to no carbon deposition. Selectivities up to 95% were found under TPR conditions. The observed behavior corresponded well with selectivity trends previously reported for Ag/SiO2 catalysts, and the present findings permit a rationalization of the catalytic performance in terms of pronounced coverage-dependent changes in adsorption geometries of the reactant and the products. Thus, at low coverages, the C═O bond in crotonaldehyde lies almost parallel to the metal surface, whereas the C═C was appreciably tilted, favoring hydrogenation of the former and disfavoring hydrogenation of the latter. With increasing coverage of reactants, the C═C bond was forced almost parallel to the surface, rendering it vulnerable to hydrogenation, thus markedly decreasing selectivity toward formation of crotyl alcohol. Butanol formation was the result of an overall two-step process: crotonaldehyde → crotyl alcohol → butanol, further hydrogenation of the desired product crotyl alcohol being promoted at high hydrogen coverage due to the C═C bond in the unsaturated alcohol being driven from a tilted to a flat-lying geometry. Finally, an explanation is offered for the strikingly different behavior of Ag(111) and Cu(111) in the chemoselective hydrogenation of crotonaldehyde in terms of the different degrees of charge transfer from metal to C═O π bond, as suggested by C 1s XPS binding energies.

Enero, 2012 · DOI: 10.1021/jp208831h



icms